
Understanding the Limitations of Solid
State Storage in Embedded PCs Using
Robustel Flash Manager

Many System Integrators/developers are
not aware of the “Endurance” limitations
of MLC NAND Flash, and this can cause
premature failure of entire fleets of IoT
devices. So, it is critical to measure how
your software behaves and mitigate the
issues associated with unsympathetic
application software design when MLC
NAND Flash is used or the primary
storage device – especially one hosting
a Linux OS & application software.

This white-paper is designed to help
developers understand how to measure
the impact of their software on an eMMC
(NAND Flash) drive & what can be done
if it appears that premature ‘wear-out’ is
a risk for your application.

Author’s Note:
If you are busy and don’t have the time or interest to follow this subject from first principles,
please jump to Chapter 6 directly for an overview of how to use Robustel’s “Flash Manag-
er” tool. This is the quickest way to use this Document to “de-risk” your IoT/Edge Gateway
deployment using Robustel’s EG5000 series Gateways.

Introduction
NAND Flash has become a de facto
storage medium for modern day con-
sumer devices such as cellphones, tablet
PCs and e-readers. It is also the bulk
storage medium inside SSDs, USB
drives and SD cards and a common
inclusion in low-cost embedded comput-
ers like Robustel’s EG5000 series.
(See: www.robustel.com/product_cat/in-
dustrial-edge-computing-gateway)

Devices made using NAND Flash offer
mechanical shock resistance, high
durability and are able to withstand high
temperature and pressure, making them
ideal for industrial applications. A
common form-factor for NAND Flash
storage within industrial systems like
Robustel’s EG5000 series Edge Gate-
ways is “eMMC”.

NAND flash is a popular nonvolatile
memory, mainly because of its small
size, low power consumption and dura-
bility. Although this technology is suitable
for pure ‘storage’, many important
features need to be considered when it
is included in a complex system –
especially one that is running an Operat-
ing System like Linux.

Compared to traditional hard disk drives,
eMMC has no moving parts so it’s ideal
for systems that vibrate and shake.
NAND Flash also offers fast read access
times, which is crucial for data intensive
applications. However, one of the main
drawbacks of NAND Flash based stor-
age is the relatively limited number of
write/erase cycles that such a device can
withstand.

Put simply, a NAND Flash device ‘wears
out’, and its rate of wear is proportional
to how much it is used – it is conceptual-
ly similar to a battery, except there is no
practical way to recharge an eMMC
drive.

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

A brief note on
eMMC vs SD Cards Understanding “Wear” at

the physical layerA number of very low-cost embedded
PCs will use an SD Card as the primary
storage medium, containing all critical
OS and application files.

Some of the challenges of SD vs eMMC
that are worth considering include:

An eMMC chip soldered to the PCB will
have much better vibration resistance
than an SD card stuck into a slot/holder

An eMMC chip will have a better cyber-
security implication as it cannot be easily
removed from the product

The tight clearance between the eMMC
chip and the PCB reduces unwanted
inductance and signal distortion, which
tends to allow higher data-transfer rates
than SD cards.

Another concern with SD cards is the
large number of fakes on the market,
which sometimes find their way into even
legitimate products. Something in an
eMMC package is much more traceable
and less likely to be part of a fake prod-
uct venture.

Robustel’s products only use eMMC
chips for the primary OS, but some
products can accommodate an SD card
for low cost bulk storage.

Flash memory is made of a unique
arrangement of logic gates set up in a
feedback loop, and these logic gates are
made of transistors. The transistors are
fabricated all together on one piece of
silicon foundation, with layers of etching
and additives to the silicon to create the
design pattern and the electrical proper-
ties needed to form the components.
This one-piece device is known as an
integrated circuit. This IC fabrication
process is similar to other applications
such as other types of memory, CPUs,
controllers, and graphics processors.

Flash memory wears out, unlike other IC
components which never really wear out
unless there is an event that causes
damage to part of it, such as overheating
or an electrical surge. Flash wear is due
to the unique requirement by design, that
the "erasing process hits the flash cell
with a relatively large charge of electrical
energy." Flash drives can't simply over-
write bytes of data, as with magnetic
discs. Instead, it has to clear out whole
blocks at a time, analogous to sectors on
a magnetic disc, in order to write new
data. Each time a block is erased, the
large electrical charge actually degrades
the silicon material a minute amount,
until after enough write-erase cyles, the
electrical properties of the flash cell
begin to break down and that cell
becomes unreliable.

Chapter 1

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

So, by design, NAND Flash has many great properties including cost and durability but the
trade-off is a finite lifetime per block, hence application developers must preserve the
available resource through empathetic use of the chip.

This is where things start to get a little
more complicated.

The Linux I/O stack comprises a complex
array of subsystems working in tandem to
optimize read/write performance from
User-space to hardware and back. It is
not always clear which user-level writes
hit the Flash memory or how.

The NAND Flash device – eMMC or SSD
will have its own controller inside that is
configured to prolong device lifetime by
optimising when and how writes are
made to Flash.

Figure 1.1 – Types of NAND Flash

Figure 1.2 – typical Linux I/O
stack representation

Measuring “Wear” from
the host system

Chapter 2

There are several tools inside a Linux OS
that can help to shine light on what is
happening and where. Please note
before reading on in this chapter, trying to
establish exactly how your code flows
through the IO stack might not be the
most expedient solution to a complex
problem so some readers can consider

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

Here are some examples of functions
in Linux that could help with your
analysis:

The iostat command is used for monitor-
ing system input/output device loading
by observing the time the devices are
active in relation to their average transfer
rates. The iostat command generates
reports that can be used to change
system configuration to better under-
stand the input/output load of physical
disks – eg. eMMC Flash.

iostat

Measuring “Wear” at
Drive level

Chapter 3

iotop is a common Linux command. It is
a ‘top’-like utility for disk input and output
(I/O). Use this command to see I/O
usage information output by the Linux
kernel. It displays a table of current I/O
usage by Linux processes or threads on
the Linux system.

iotop

blktrace is particularly useful as it gives
layer-wise information from inside the
block I/O layer. When used correctly, it’s
possible to generate events for all I/O
requests and monitor it from where it is
evolving. Though it extracts data from
the kernel, it is not an analysis tool and
the interpretation of the data can be
complex. Developers can feed the output
from blktrace into tools like btt or
blkparse to get the analysis done.

An eMMC storage device comprises of
NAND Flash chips and a “Device Con-
troller”. The controller is the heart of the
device and is there to optimise the I/O
reads and writes so performance and
endurance are optimal when used with
modern operating systems.

Key functions of the Controller include
Block Management, Garbage Collection,
Error Control and Wear Levelling. The
reader might find it useful to further
research these topics to fully understand
NAND Flash management.

1）Jedec standard health reporting
introduced in JEDEC v5.0 gives an
estimated remaining lifetime in 10%
increments but is not very granular. It is
a useful in-service tool for a coarse
approximation of device wear but is not a
very good pre-deployment diagnostic
tool to fully understand and assess risk
associated with premature wear out of
Flash.

2）eMMC devices contain Vendor spe-
cific registers that indicate useful
real-time data such as number of block
erases & increased bad clock count.

Because these can change on a
per-vendor basis, working out exactly
how to interrogate Device Controllers
can take a little time. The explicit com-
mands are sometimes not included in the
User Guide and/or only available under
NDA.

blktrace & blkparse

the rest of this Chapter as being for
information only. Subsequent chapters
highlight more practical real-world solu-
tions for managing risk without becom-
ing a Linux IO expert!

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

The equation for NAND
Flash wear/endurance

TBW = DC * EF / WAF

Chapter 4

The mmc-utils tool in Linux is part of
this story – it is commonly used to
interrogate eMMC devices from Linux
to achieve the following:

The last two items of the list above are
the most relevant to this paper as they
give a general idea of how to print/read
information from an eMMC chip, espe-
cially that pertaining to device health.

Readers that are interested in the most
granular detail on this subject should
now interrogate the manufacturer or the
manufacturer’s documentation for their
chosen NAND Flash based device to
understand what health related data is
included and how to access it. “CMD56”
is a commonly used generic command
for this information.

A simple analysis of above shows that
DC and EF should be large and WAF
should be small for the best possible
TBW or “endurance” of the Flash devic-
es. We will now explain these concepts
in detail and how to achieve maximum
endurance.

Because of the vagaries and complexi-
ties of the above, Robustel have devel-
oped the “Flash Manager” application
that runs on all EG5000 series Gateways
to allow customers to easily retrieve
useful eMMC-related health information.
More on this in Chapter 6.

Because of the vagaries and complexi-
ties of the above, Robustel have devel-
oped the “Flash Manager” application
that runs on all EG5000 series Gateways
to allow customers to easily retrieve
useful eMMC-related health information.
More on this in Chapter 6.

A good coarse approximation of estimat-
ed device life is TBW = Total Bytes
Written. The governing equation is as
follows:

Where

DC = Device Capacity in Bytes

EF = Endurance Factor = maximum
program/erase cycles (as defined by
Flash type – 3000 for typical MLC NAND
Flash as used in Robustel products)

WAF = Write Amplification Factor (appli-
cation / setup specific)

Set the eMMC write protect status.

Create a general-purpose partition.

Print and parse extCSD (Extended
Card Specific Data) infomation.

Print and parse CSD (Card Specific
Data) information.

Permanently enable/disable the
eMMC H/W Reset feature.

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

DC = Device Capacity

This is a simple concept. eMMC are
shipped in typical sizes of 1GB, 2GB,
4GB etc.

Choosing a device that has lots of extra
capacity compared with what the OS/ap-
plication requires is a simple way to
create higher endurance. This is known
as “over-provisioning”.

EF = Endurance Factor

Figure 1.1 shows typical values for this in
the row marked P/E cycles. The majority
of mainstream eMMC devices use “MLC”
NAND Flash with an EF of 3000.

It is possible to change to an “SLC”
NAND Flash device to bring about a
substantial and direct increase in endur-
ance thanks to SLC’s 100,000 P/E
cycles but it is not commonly used in low
cost/high volume IoT Devices due to
cost.

With the highest “cost per bit” of all Flash
types, SLC is typically only used in high
criticality applications like Military, Aero-
space and Enterprise IT.

The choice here for the product designer
is simple – use expensive SLC to
increase endurance or be smart about
the application of MLC NAND Flash.
Most consumer/industrial applications
apply the latter principle.

WAF = Write Amplification Factor

This entire white-paper and its objectives
pivot on this critical concept.

Understanding and subsequently reduc-
ing the WAF of your application software
is the cheapest way to improve endur-
ance, but it is not a trivial concept.

Write amplification (WA) is an undesir-
able phenomenon associated with flash
memory and solid-state drives (SSDs)
where the actual amount of information
physically written to the storage media is
a multiple of the logical amount intended
to be written.

Because flash memory must be erased
before it can be rewritten, with much
coarser granularity of the erase opera-
tion when compared to the write opera-
tion, the process to perform these opera-
tions results in moving (or rewriting) user
data and metadata more than once.
Thus, rewriting some data requires an
already-used-portion of flash to be read,
updated, and written to a new location,
together with initially erasing the new
location if it was previously used. Due to
the way flash works, much larger
portions of flash must be erased and
rewritten than actually required by the
amount of new data. This multiplying
effect increases the number of writes
required over the life of the SSD, which
shortens the time it can operate reliably.
The increased writes also consume
bandwidth to the flash memory, which
reduces write performance to the SSD.
Many factors will affect the WA of an
SSD; some can be controlled by the user
and some are a direct result of the data
written to and usage of the SSD.

Above is the start of an excellent article
on this subject on Wikipedia – see:
http://en.wikipedia.org/wiki/Write_amplifi-
cation

We recommend the reader takes time to
read this article, particular the section
entitled “Factors affecting the value” as
this is where there are some detailed
concepts that can be explored by Devel-
opers to decrease WAF and hence
increase eMMC endurance.

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

A – Over-provisioning

EG5100 - (8589934592 x 3000/6)
= 3.9TBW

EG5120 - (17179869184 x 3000/6)
= 7.8 TBW

General methods for
Reducing & Managing
“Wear”

Chapter 5

One of the simplest ways application
developers can try to optimise their
software is to encourage disk writes to
be large and sequential as opposed to
short and random. This will help to keep
the WAF in the typical 4 to 8 range as
opposed to some applications whose
WAF can be significantly higher.

It can be helpful to develop your system
assuming a very bad WAF of 20. If your
calculations show that your NAND Flash
device will have sufficient endurance for
the lifetime of the project, then you can
be quite confident that the outcome will
be positive.

B – Understand Write
Amplification
Encourage your application developers
to study this excellent article:
https://en.wikipedia.org/wiki/Write_ampli-
fication

We could not hope to better this narra-
tive on the subject so please make the
most of it!

C – Use pSLC to increase
endurance
Like most of the embedded PC industry,
Robustel uses MLC NAND Flash to keep
costs competitive but Robustel can also
offer “pSLC” for applications where there
is concern about the endurance of the
system Storage (NAND Flash) for long
life-time applications.

This is available from Robustel on a “per
project” basis – your Robustel rep can
provide more information.

One of the simplest methods to prevent
NAND Flash wearing out is to have more
of it. Robustel’s EG5100 Gateway has
8GB, and the EG5120 has 16GB eMMC
NAND Flash. This is a relatively large
amount of storage for such devices,
driving up baseline product cost, but it’s
one of the most simple and effective
ways of increasing lifetime.

If we use a typical WAF of 6 for the
EG5100 and EG5120 respectively, we
get Endurance (TBW) figures of:

If we assume product life is 5 years,
that’s 5 x 365 = 1825 days

This means that the EG5120 could
handle 7.8/1825*1024 = 4.4GB worth of
writes per day for 5 years.

However, with poorly implemented
software with a WAF of 18, that figure
would drop to one third of that with only
1.5GB per day able to be written, which
corresponds to only 64MB per hour – a
relatively small number for a modern OS.

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

Introducing Flash
Manager – Robustel’s
wear monitoring utility

Chapter 6

D – Other Considerations
i) A simple way to improve Flash lifetime
may be to limit “debug” and “logging”
information as this is often written on the
fly

ii) Designing your application to use
write-once patterns for data that does not
change frequently. If data is only
appended and never modified, it reduces
wear.

iii) Allowing the data in the NAND flash to
fill close to capacity - therefore requiring
more program/erase cycles needed to
move data around before sufficient
pages are marked for erasure is not
recommended.

iv) Remember that the specific strategies
you choose may depend on the nature of
your application and the type of data it
manages.

All of Robustel’s EG5000 series (and
other RobustOS PRO) series gateways
include a “Flash Manager” feature that
allows developers to quickly ascertain
NAND Flash status without needing
detailed knowledge of Linux commands
that interrogate Flash device Controllers.

Flash Manager allows customers to
deploy an image onto an EG5000 series
and measure NAND Flash performance
before and after a period of operation in
‘typical’ conditions.

By comparing NAND Flash state before
and after and then extrapolating out that
rate of wear to an expected product
lifetime, it’s possible for product develop-
ers to quickly ascertain that their soft-
ware writes to eMMC in an empathetic
way and products will not suffer from
premature failure for NAND Flash wear
reasons.

Robustel interrogate both the JEDEC
standard health status and vendor
proprietary registers to provide as
detailed a snapshot as possible.

By comparing successive snapshots
against time elapsed, application devel-
opers can get a feeling for real-world
endurance and assure themselves that
the hardware and software can last for
the required lifetime of the project.

Detailed Overview of Flash
Manager

A – Status screen

By comparing successive snapshots
against time elapsed, application devel-
opers can get a feeling for real-world
endurance and assure themselves that
the hardware and software can last for
the required lifetime of the project.

Per screenshot below, the status screen
keeps a running total of useful NAND
flash parameters. These are explained in
more detail shortly.

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

B – Flash Memory Tests
A Flash Memory Test can be set running
by the user for a period of up to 14 days
duration.

It can be manually started or scheduled
to start at a specific time.

The output of a test is a CSV file with a
detailed comparison of NAND Flash
status at the beginning and at the end of
the test. This result can be analysed and
extrapolated to the useful lifetime of the
system deployment.

C – Test result analysis

Estimated Remaining Device LifeTime

Flash Total Erase Amount(MB)

The output from a test is per the CSV file
below. Underneath, we explain the
meaning and significance of each line.

This is a coarse approximation of expect-
ed remaining lifetime of a NAND Flash
device. It is based on the JEDEC stan-
dard JESD84-A43.

Total amount of data erased during the
test based on Total Blocks erased multi-
plied by Block Size.

Total Blocks Erased
The total number of Block erase actions
during the test. This is arguably the most
important variable by far when getting a
feel for how well your device will survive
based on the currently running software.

Block Size(MB)
Block size of NAND Flash device (usual-
ly eMMC) per the current configuration.
A block comprises of a number of
“pages”.

Total Number Of Blocks
Total number of Blocks that the NAND
Flash is made up of.

Flash Avg Erase Count
Number of Block Erase actions per
usable block as an average The maxi-
mum avg erase count is 3000 for MLC
NAND flash.

Flash Avg Erase Rate
Average number of erase counts divided
by total number of blocks.

Flash Bad Block Count
Total number of “bad blocks” as detected
by the Flash controller.

Increase Bad Block Count
How many blocks became “bad” during
the test.

Understanding the Limitations of Solid State Storage in
Embedded PCs Using Robustel Flash Manager

D – Applying Flash Manager
results

Appendix A – Warranty
conditions for EG5000
series products

Power On Count
How many times has the NAND
Flash/eMMC device been powered up.

Reserved Block Consumption
When a bad block is generated, a
reserved block is used to replace the bad
block to ensure the reliability of the
NAND flash. After all reserved blocks are
used to replace bad blocks, if bad blocks
are generated, no reserved block can be
used to replace the bad block.

Using the start and end figures from the
report, we can easily estimate how the
user’s application will affect the health of
the flash memory in the EG5000 series
over an extended period by extrapolating
out the results given over the duration of
the test.

“Robustel Gateways are warrantied
against premature failure within the first
2 years of their life as standard but
failure due to excessive wear/use of
NAND Flash is NOT covered by the
standard warranty. eMMC module
replacemement may be possible in some
conditions but this will always be a
chargeable service available at Robust-
el’s sole discretion.”

Capacity(MB)
Total device capacity – does not change.
For reference only.

Data Written(MB)
Total data written to the device (as
measured by the controller) during the
test.

Data Erased(MB)
Total data erased from the device (as
measured by the controller) during the
test.

For more information, please visit our
website or leave a message at:

www.robustel.com
marketing@robustel.com

While every reasonable effort has been made to ensure that this information is accurate, complete, and up-to-date, all information is provided
“AS IS” without warranty of any kind.
Robustel disclaims liability for any reliance on this information. All registered trademarks or trademarks are property of their respective owners.

/robustel robustel/RobustelTechnologies

https://www.linkedin.com/company/robustel/

